3.71 \(\int \frac {\sqrt {e \cot (c+d x)}}{a+b \cot (c+d x)} \, dx\)

Optimal. Leaf size=302 \[ -\frac {\sqrt {e} (a-b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {\sqrt {e} (a-b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \sqrt {b} \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{d \left (a^2+b^2\right )}+\frac {\sqrt {e} (a+b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {\sqrt {e} (a+b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )} \]

[Out]

1/2*(a+b)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/(a^2+b^2)/d*2^(1/2)-1/2*(a+b)*arctan(1+2^(1/2
)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/(a^2+b^2)/d*2^(1/2)-1/4*(a-b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e
*cot(d*x+c))^(1/2))*e^(1/2)/(a^2+b^2)/d*2^(1/2)+1/4*(a-b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))
^(1/2))*e^(1/2)/(a^2+b^2)/d*2^(1/2)+2*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))*a^(1/2)*b^(1/2)*e^(
1/2)/(a^2+b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 302, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3572, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac {\sqrt {e} (a-b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {\sqrt {e} (a-b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \sqrt {b} \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{d \left (a^2+b^2\right )}+\frac {\sqrt {e} (a+b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {\sqrt {e} (a+b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x]),x]

[Out]

(2*Sqrt[a]*Sqrt[b]*Sqrt[e]*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/((a^2 + b^2)*d) + ((a + b
)*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*Sqrt[e]*ArcTa
n[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqrt[e
]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqr
t[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3572

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(d*(b*c
- a*d))/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \frac {\sqrt {e \cot (c+d x)}}{a+b \cot (c+d x)} \, dx &=\frac {\int \frac {b e+a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{a^2+b^2}-\frac {(a b e) \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {-b e^2-a e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {(a b e) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=\frac {(2 a b) \operatorname {Subst}\left (\int \frac {1}{a+\frac {b x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {((a-b) e) \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {((a+b) e) \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac {2 \sqrt {a} \sqrt {b} \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\left (a^2+b^2\right ) d}-\frac {\left ((a-b) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {\left ((a-b) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {((a+b) e) \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac {((a+b) e) \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {2 \sqrt {a} \sqrt {b} \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\left (a^2+b^2\right ) d}-\frac {(a-b) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {\left ((a+b) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {\left ((a+b) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}\\ &=\frac {2 \sqrt {a} \sqrt {b} \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a+b) \sqrt {e} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \sqrt {e} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.28, size = 226, normalized size = 0.75 \[ \frac {\sqrt {e \cot (c+d x)} \left (24 \sqrt {a} \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )-8 a \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )+3 \sqrt {2} b \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-3 \sqrt {2} b \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )+6 \sqrt {2} b \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-6 \sqrt {2} b \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )\right )}{12 d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x]),x]

[Out]

(Sqrt[e*Cot[c + d*x]]*(6*Sqrt[2]*b*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 6*Sqrt[2]*b*ArcTan[1 + Sqrt[2]*Sqr
t[Cot[c + d*x]]] + 24*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] - 8*a*Cot[c + d*x]^(3/2)*Hy
pergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] + 3*Sqrt[2]*b*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]
 - 3*Sqrt[2]*b*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(12*(a^2 + b^2)*d*Sqrt[Cot[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e \cot \left (d x + c\right )}}{b \cot \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(e*cot(d*x + c))/(b*cot(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.79, size = 417, normalized size = 1.38 \[ \frac {2 e a b \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}\, b}{\sqrt {a e b}}\right )}{d \left (a^{2}+b^{2}\right ) \sqrt {a e b}}-\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d \left (a^{2}+b^{2}\right )}-\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (a^{2}+b^{2}\right )}+\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (a^{2}+b^{2}\right )}-\frac {e a \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d \left (a^{2}+b^{2}\right ) \left (e^{2}\right )^{\frac {1}{4}}}-\frac {e a \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (a^{2}+b^{2}\right ) \left (e^{2}\right )^{\frac {1}{4}}}+\frac {e a \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (a^{2}+b^{2}\right ) \left (e^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x)

[Out]

2/d*e*a*b/(a^2+b^2)/(a*e*b)^(1/2)*arctan((e*cot(d*x+c))^(1/2)*b/(a*e*b)^(1/2))-1/4/d/(a^2+b^2)*b*(e^2)^(1/4)*2
^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot
(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d/(a^2+b^2)*b*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d
*x+c))^(1/2)+1)+1/2/d/(a^2+b^2)*b*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/4/
d*e/(a^2+b^2)*a/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*
cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d*e/(a^2+b^2)*a/(e^2)^(1/4)*2^(1/2)*arct
an(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d*e/(a^2+b^2)*a/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(
1/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 233, normalized size = 0.77 \[ \frac {{\left (\frac {8 \, a b \arctan \left (\frac {b \sqrt {\frac {e}{\tan \left (d x + c\right )}}}{\sqrt {a b e}}\right )}{\sqrt {a b e} {\left (a^{2} + b^{2}\right )}} - \frac {\frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} - \frac {\sqrt {2} {\left (a - b\right )} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} + \frac {\sqrt {2} {\left (a - b\right )} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}}}{a^{2} + b^{2}}\right )} e}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(8*a*b*arctan(b*sqrt(e/tan(d*x + c))/sqrt(a*b*e))/(sqrt(a*b*e)*(a^2 + b^2)) - (2*sqrt(2)*(a + b)*arctan(1/
2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*
(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) - sqrt(2)*(a - b)*log(sqrt(2)*sqrt(e)*sqrt(e/tan(d
*x + c)) + e + e/tan(d*x + c))/sqrt(e) + sqrt(2)*(a - b)*log(-sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan
(d*x + c))/sqrt(e))/(a^2 + b^2))*e/d

________________________________________________________________________________________

mupad [B]  time = 1.39, size = 4808, normalized size = 15.92 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(1/2)/(a + b*cot(c + d*x)),x)

[Out]

(atan(((((32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4 - (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^
2*e^12))/d^5 + (((32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^
4 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-
a*b*e)^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/(d^5*(a^2 +
b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*
b*e)^(1/2)*1i)/(d*(a^2 + b^2)) + (((32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4 + (((32*(13*a^2
*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 - (((32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11
 + 2*a^5*b^2*d^2*e^11))/d^4 - (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 + (32
*(e*cot(c + d*x))^(1/2)*(-a*b*e)^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b
^3*d^4*e^10))/(d^5*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1
/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2)*1i)/(d*(a^2 + b^2)))/((64*a*b^3*e^13)/d^5 - (((32*(e*cot(c + d*x))^(1/2)*
(b^5*e^12 - 2*a^2*b^3*e^12))/d^4 - (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(e*cot(c + d*x)
)^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4 + (((32*(12*a*b^7*d^4*e^11 + 24*a^
3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-a*b*e)^(1/2)*(16*b^9*d^4*e^10 + 16*a
^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/(d^5*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2
)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)) + (((32*
(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4 + (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5
- (((32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4 - (((32*(12
*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 + (32*(e*cot(c + d*x))^(1/2)*(-a*b*e)^(1/2)*
(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/(d^5*(a^2 + b^2)))*(-a*b*
e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(d*(a^2 + b^2)))*(-a*b*e)^(1/2))/(
d*(a^2 + b^2))))*(-a*b*e)^(1/2)*2i)/(d*(a^2 + b^2)) - atan(((((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^
5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-
e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^1
0 - 16*a^6*b^3*d^4*e^10))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(e*cot(c + d*x))^(1/
2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*
b*d^2)))^(1/2))*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 -
2*a^2*b^3*e^12))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*1i - (((32*(13*a^2*b^4*d^2*e^12 + a
^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 + (32*(e*co
t(c + d*x))^(1/2)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10
- 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) - (32*
(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4)*(-e/(4*(b^2*d^2*1i
 - a^2*d^2*1i + 2*a*b*d^2)))^(1/2))*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(e*cot(c + d*x)
)^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*1i)/((((32*(13*
a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^
11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(16*b^9*d^4*e^10 +
16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b
*d^2)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4
)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2))*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) -
 (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(
1/2) + (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 +
12*a^5*b^3*d^4*e^11))/d^5 + (32*(e*cot(c + d*x))^(1/2)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(1
6*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(-e/(4*(b^2*d^2*1i - a
^2*d^2*1i + 2*a*b*d^2)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b
^2*d^2*e^11))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2))*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a
*b*d^2)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4)*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i
 + 2*a*b*d^2)))^(1/2) + (64*a*b^3*e^13)/d^5))*(-e/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*2i - atan((
(((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*
b^3*d^4*e^11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d
^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^
2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*
e^11))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2))*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)
))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d
^2*2i)))^(1/2)*1i - (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^
5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 + (32*(e*cot(c + d*x))^(1/2)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2
i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(-(e*1i)/
(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e
^11 + 2*a^5*b^2*d^2*e^11))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2))*(-(e*1i)/(4*(b^2*d^2 - a
^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4)*(-(e*1i)/(4*(b^2*d
^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*1i)/((((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 + (((32*(12*a*b^7*
d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(-(e*1i)/(4*(b^2*d^2 -
 a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e
^10))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(20*a^3*b^4*d^2*e
^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2))*(-(e
*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a^2*b^3*e^12))/d^4
)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (((32*(13*a^2*b^4*d^2*e^12 + a^4*b^2*d^2*e^12))/d^5 +
 (((32*(12*a*b^7*d^4*e^11 + 24*a^3*b^5*d^4*e^11 + 12*a^5*b^3*d^4*e^11))/d^5 + (32*(e*cot(c + d*x))^(1/2)*(-(e*
1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 -
 16*a^6*b^3*d^4*e^10))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*
(20*a^3*b^4*d^2*e^11 - 14*a*b^6*d^2*e^11 + 2*a^5*b^2*d^2*e^11))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*
2i)))^(1/2))*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(b^5*e^12 - 2*a
^2*b^3*e^12))/d^4)*(-(e*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (64*a*b^3*e^13)/d^5))*(-(e*1i)/(4*(b
^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*2i

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e \cot {\left (c + d x \right )}}}{a + b \cot {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c)),x)

[Out]

Integral(sqrt(e*cot(c + d*x))/(a + b*cot(c + d*x)), x)

________________________________________________________________________________________